SECTION I
CRANE INSTALLATION INSTRUCTIONS
CRANE INSTALLATION INSTRUCTIONS .F1084-H 1-1
MOUNTING PATTERN. DWG.50495-C 1-4
ELECTRICAL INSTALLATION .DWG.50377-G 1-5
STABILITY PROCEDURE. .F691-I 1-6
STABILITY TEST RESULTS .F691-I 1-7
SECTION II
GENERAL OPERATION, INSPECTION, AND MAINTENANCE
CRANE SAFETY RULES .F1122-C. 2-1
INTRODUCTION .F1111-D 2-3
OPERATING RESTRICTIONS .F1112-G 2-4
OPERATING PRACTICES .F1112-G 2-5
INSPECTION AND MAINTENANCE F1113-E 2-7
MONTHLY INSPECTION REPORT F1123-B 2-9
ANNUAL INSPECTION REPORT .F1507-0 2-10
STANDARD HAND SIGNALS FOR CRANE OPERATIONS .F2409-0 2-13
SECTION III
CRANE SYSTEMS AND TROUBLESHOOTING
KTFM CONTROL SYSTEM(OPTIONAL). .F1327-C 3-1
SAFETY SYSTEM .F1923-0 3-2
HYDRAULIC SYSTEM FOR ELECTRIC CRANE .F1145-E 3-4
TROUBLESHOOTING KHFM CONTROL SYSTEM .F1328-A 3-6
TROUBLESHOOTING HYRAULIC PUMP F1255-C 3-9
LIMITING SYSTEM OPERATIONS .F2202-0 3-10
LIMITING SYSTEM CONNECTION INFORMATION .F2203-0 3-12
LIMITING SYSTEM ROUTINE MAINTENANCE .F2204-0 3-13
LIMITING SYSTEM TROUBLESHOOTING CHART .F2205-A 3-14
LIMITING SYSTEM ERROR CODE CHART .F2206-A 3-15
LIMITING SYSTEM PARTS LIST .F2207-0 3-16
LIMITING SYSTEM SPECIFICATIONS .F2208-A 3-17
LIMITING SYSTEM ANGLE SENSOR SETUP .F2209-0 3-18
LIMITING WIRING DIAGRAM .F2210-0 3-20
OVERLOAD PRESSURE READINGS .F2345-0 3-21
DEUTSCH CONNECTORS AND PINS .F2435-A 3-22
SECTION IV
CRANE SPECIFICATIONS
LIFTING CAPACITIES F2344-D 4-1
POWER FUNCTIONS AND SPEEDS F2344-D 4-1
BOLT AND LUBRICATION SPECS F2344-D 4-2
SECTION V
PARTS
BOX PARTS LIST .F2789-0 5-1
CRANE ASSY 1st \& ELECTRICAL SCHEMATIC DWG.34845-A 5-2
CRANE ASSY 2nd .DWG.34838-A 5-9
PENDANT CONTROL DWG.25181-B 5-12
KTFM MEGA WIRELESS CONTROLS (OPTIONAL) .DWG.28490-B 5-13
RELAY BOX ASSEMBLY DWG.25863-0 5-14
BOOM-BODY ASSEMBLY DWG.34837-A 5-15
ELEVATION CYLINDER. DWG.24842-A 5-16
BODY ASSEMBLY. .DWG.27484-J 5-17
MANIFOLD ASSEMBLY DWG.27501-D 5-18
HYDRAULIC PUMP DWG.27662-A 5-19
BASE-HOUSING ASSEMBLY DWG.27483-G 5-20
ELECTRIC SWIVEL 5-22
DWG.26589-A
BOOM ASSEMBLY - 11FT 5-23
DWG.34836-A
BOOM INNER ASSEMBLY - 11FT 5-24
DWG.27543-A
BOOM OUTER ASSEMBLY - 11FT 5-25
DWG.34824-0
WINCH 5-26
DWG.27528-0
WINCH PARTS LIST. 5-27
ELECTRIC WIRING HARNESS DWG. 34846-0 5-28
INCLINOMETER DIAGRAM 5-29
.DWG.24457-A
TRANSDUCER DIAGRAM 5-30
.DWG.24456-A
HYDRAULIC SCHEMATIC 5-31

MODEL 206 \& LA6K INSTALLATION INSTRUCTIONS

Read this complete section before starting the crane installation.
Before installing make sure you have all necessary parts. Please refer to the Owner's manual Box parts list in parts section for the list of parts required for installation. Report any shortages to Liftmoore, Inc. immediately.

1. The mounting must be adequate to support the load and moment rating for the crane as listed:

> 206 - 2,000 Lbs. Maximum Load; 6,500 Ft.- Lbs. Moment Rating
> LA6K - 2,000 Lbs. Maximum Load; 6,500 Ft.- Lbs. Moment Rating

For truck mounting the crane must be mounted on a structure that will carry the loads to both sides of the truck frame. Sample mounting instructions are available from Liftmoore upon request.

WARNING: For crane model LA6K, use the lifting accessories (bracket, hex screw, hex nut, and warning tag) for shipping and handling purposes. These accessories must be removed before operating the crane. (See Crane Assembly Drawing in parts section)
2. Layout the mounting holes for the crane as shown in the drawing No. 50495 in this manual. The base plate for this crane is 12 " square and $5 / 8^{\prime \prime}$ thick with holes for four $1 / 2^{\prime \prime}$ bolts on a $9.5^{\prime \prime}$ square pattern. Drill four $9 / 16$ " mounting holes to match the $9.5^{\prime \prime}$ square pattern. Cut a minimum 1.5 " hole in the center of the mounting to clear the power supply wire that projects through the base plate. Bolt the crane onto the truck using the $1 / 2^{\prime \prime} \times 2-3 / 4^{\prime \prime}$ Grade 8 bolts supplied. If longer bolts are required, at least Grade 8 quality is needed. Tighten the $1 / 2^{\prime \prime}$ Grade 8 bolts to 110 Ft.-Lbs. Other bolts can be used if they are at least Grade 8 strength and no less than $1 / 2^{\prime \prime}$ diameter.

NOTE: For crane model 206RELS (without pedestal), four additional 0.75 " holes are required (see Drawing No. 50495)
3. A manual disconnect switch with mounting bracket and terminals is provided with the crane. This switch will act as the main power disconnect for the crane. Removing power from the crane during periods of non-use will help to increase the life of the crane's electrical components. The switch should be mounted as near as possible to the crane and in a position which will facilitate its use. Determine the appropriate mounting position for the switch and use the supplied terminals to splice into the crane's main power cable. We recommend that this be below the welding connector supplied with the crane. Drawing No. 50377 illustrates where we recommend installing the disconnect switch, welding connector and circuit breaker(s). Always leave this switch turned to the off position to take the crane out of the electrical circuit when it is not in use.
4. The vehicle's battery should have a capacity of at least 90 Amp Hr . A second battery located near the crane is STRONGLY advised. This will keep the voltage as near 12 Volts as possible while the crane is running. The life of the crane's electrical components will be longer if the voltage is as near 12 volts as possible. A deep cycle battery provides the best battery life. Connect the second battery in parallel with the truck's original equipment battery using at least No. 1 battery wire.

MODEL 206 \& LA6K INSTALLATION INSTRUCTIONS, Cont.

5. Install the 150 Amp circuit breaker near the battery supplying the crane and on the battery's positive line. This breaker is to protect the battery in event of an accidental grounding of the positive wire anywhere along its length. Use a section of the wire and the terminals supplied to connect between the battery and the circuit breaker. See drawing No. 50377.
6. Run the No. 1 battery cable along the inside of the chassis frame to the circuit breaker(s). Make sure that the cable is protected avoiding sharp edges and heat sources such as the muffler or catalytic converter. Use loom for protection whenever the cable passes through the body, frame, or other metal objects. The quick disconnect under the crane must be accessible. Always leave this disconnected to take the crane out of the electrical circuit when it is not in use.
7. Install the extra ground wire, supplied in the crane parts box, from the negative battery terminal to the truck's main frame. Grounding the battery to the frame protects the chassis wiring. Leave the regular ground to the engine as is. The battery end of both wires can be clamped together using a universal type of battery connector. This ground must be in place to protect the truck's wiring and for efficient operation of the crane. A good ground must exist for the crane to work. Leaving this ground wire off can damage the truck chassis wiring as it may then carry some of the crane circuit's current. This wire must be as large as the battery lead wire for the system to operate efficiently.
8. A boom support must be installed to secure the boom when the truck is moved. Mount an eye on the boom rest for the hook as shown in Liftmoore's Accessories bulletin. The wire rope can then be used to secure the boom in the rest.
9. An Outrigger or Jackstands must be installed to keep the truck and the crane as level as possible under all expected working conditions. Keeping the crane level reduces the loads on the rotation gear. This will also protect the truck's springs, axle, and wheels when heavy loads are suspended from the crane.
10. Additional truck springs may be necessary depending upon the size of the truck and location of the crane on the truck. Add springs to bring the truck level after all equipment is mounted.
11. The crane is now ready to use. Read the Operating Instructions Section of the Owner's Manual before operating the crane. When operating the crane for the first time, run the cylinders through their full extension cycle to purge any air from the cylinder. Operate the crane to assure complete operation of all functions.

MODEL 206 \& LA6K INSTALLATION INSTRUCTIONS, Cont.

12. If installing the crane:
A) With an auxiliary battery, the installer will need to provide the battery, two additional 150 Amp circuit breakers, and the necessary terminals. See drawing No. 50377 for instructions on where to install the circuit breakers. These breakers are to protect the crane and batteries in event of an accidental grounding of the positive wire anywhere along its length.
B) Without an auxiliary battery, install the one 150 Amp circuit breaker that is provided in the crane parts box. The circuit breaker should be installed near the battery supplying the crane and on the battery's positive line. This breaker is to protect the crane and battery in event of an accidental grounding of the positive wire anywhere along its length. Use a section of the wire and the terminals supplied to connect between the battery and the circuit breaker.
See drawing No. 50377 for instructions on where to install the circuit breaker(s).
13. If installing the crane:
A) With an auxiliary battery, install the ground wire from the crane's base to the negative terminal on the auxiliary battery. The negative terminal of the auxiliary battery should be grounded to the truck's main frame.
B) Without an auxiliary battery, install the ground wire from the crane's base to the truck's main frame.
14. Verify that the anti-two-block will stop extension out, boom down and winch up when the pickle weight or bail arms on the device are lifted by either function. Make sure that:
A) If equipped with a pickle weight: it is on the live or running wire rope.
B) If equipped with bail arms: the wire rope is in between the bail arms.

The Crane Assembly drawing in the owner's manual Parts Section illustrates how the pickle weight or bail arms should be installed on the line.

NOTE: Anti two-block will not disable boom down if winch is mounted on boom.
15. Place these Installation Instructions and the Owner's Manual with Operating Instructions in a convenient place for the user to find and use before operating the crane.
16. When complete, turn off the crane power switch.
17. Load Chart Decal is to be placed on the truck body for easy visibility by the user.
(

VEHICLE STABILITY TEST

OSHA (29CFR 1910.180c) requires a stability test be completed by the installer. A qualified person shall perform this test. Please call Liftmoore for any assistance required in completing this test.

TEST PREPARATIONS:

- Use as level of a test site as possible.
- Engage parking brake on vehicle.
- Set outriggers, jackstands, or other stability device in place.
- Vehicle tires should remain in contact with the ground.
- The vehicle should be level.

FILL OUT TEST FORM:

- Complete the Vehicle Information and Crane Information data at the top of Page 2 of this form.
- Use a known weight to determine the Initial Testing Load Radius. Write this number on all 3 locations on Page 2 of this form.

TEST PROCEDURE:

Determine Area Y Angle

1. With the crane extended to the Initial Testing Load Radius over the rear of the truck, lift the load. Keep the load less than 4 " off of the ground.
2. Rotate the load counterclockwise. Monitor all vehicle tires to ensure they remain in contact with the test surface.
3. When one of the vehicle's tires breaks contact with the ground, stop the rotation.
4. Use a protractor to determine this angle. Write this angle on the Stability Test Results as Area Y.

Determine Area W1 Length

5. Keeping the load off of the ground, retract or elevate the boom until all tires are in contact with the test surface.
6. Continue rotating the load counterclockwise while monitoring all vehicle tires.
7. When one of the vehicle's tires breaks contact with the ground, stop the rotation.
8. Keeping the load off of the ground, retract or elevate the boom until all tires are in contact with the test surface.
9. Repeat this procedure until either the vehicle prevents further rotation or a 180 degree rotation of the load is reached.
10. Record the load radius in feet at this point on page 2 of this form as Area W1 Length.
11. Calculate the W1 \% Rated Capacity.
12. Write the W1 \% Rated Capacity in the Stability Test Results on Page 2 of this form.

Determine Area Z Angle

13. Return the load to the rear of the vehicle and extend the load to the Initial Testing Load Radius. Keep the load less than 4 " off of the ground.
14. Rotate the load clockwise. Monitor all vehicle tires to ensure they remain in contact with the test surface.
15. When one of the vehicle's tires breaks contact with the ground, stop the rotation.
16. Use a protractor to determine this angle and write this angle on the Stability Test Results as Area Z.

Determine Area W2 Length

17. Keeping the load off of the ground, retract or elevate the boom until all tires are in contact with the test surface.
18. Continue rotating the load clockwise while monitoring all vehicle tires.
19. When one of the vehicle's tires breaks contact with the ground, stop the rotation.
20. Keeping the load off of the ground, retract or elevate the boom until all tires are in contact with the test surface.
21. Repeat this procedure until either the vehicle prevents further rotation or a 180 degree rotation of the load is reached.
22. Record the load radius in feet at this point on page 2 of this form as Area W2 Length.
23. Calculate the W2 \% Rated Capacity.
24. Write the $\boldsymbol{W} \mathbf{2}$ \% Rated Capacity in the Stability Test Results on Page 2 of this form.

Record Stability Test Results on Placard

25. Record the information from the Stability Test Results on the CRANE TRUCK STABILITY plate (P.N. 18600) and install the plate in a visible position on the vehicle, preferably near the crane.

THIS TEST IS NOW COMPLETE

STABILITY TEST FORM

Operational limits of this vehicle

Determine the Testing Load Radius by using the following:

Area W1 Length \qquad
Testing Load Radius (ft.) \qquad
Multiply by 100 \qquad
W1 \% Rated Capacity \qquad

Area W2 Length \qquad
Testing Load Radius (ft.) \qquad
Multiply by 100 \qquad
W2 \% Rated Capacity \qquad
180°

STABILITY TEST RESULTS

Area Y:	Degrees
Area Z :	Degrees
Area W1 Rated Capacity:	\%
Area W2 Rated Capacity:	\%

\qquad Date: \qquad

THIS PAGE INTENTIONALLY LEFT BLANK

LFTMOORE

CRANE SAFETY RULES

CAUTION!

1. READ AND UNDERSTAND OPERATOR'S MANUAL.
2. INSPECT VEHICLE AND CRANE INCLUDING ITS OPERATION BEFORE DAILY USE.
3. USE THIS EQUIPMENT ONLY ON SOLID LEVEL GROUND WITH OUTRIGGERS OR JACKSTANDS PROPERLY SET.
4. BEFORE OPERATING THE CRANE REFER TO MAXIMUM LOAD CHART ON CRANE FOR OPERATING LOAD LIMITS.
5. BE SURE LOAD BEING LIFTED IS WITHIN SAFE WINCH CAPACITY AS WELL AS SAFE CRANE CAPACITY. MULTI-PART LINE OPERATION IS REQUIRED WHEN SINGLE LINE LOAD CAPACITY OF WINCH IS EXCEEDED.
6. DO NOT OPERATE, WALK, OR STAND UNDER THE BOOM OR ANY SUSPENDED LOAD.
7. ALWAYS PAY OUT LOAD LINE BEFORE EXTENDING BOOM. WIRE ROPE DAMAGE AND / OR BREAKAGE MAY OCCUR.
8. BOOM TIP MUST BE DIRECTLY OVER THE LOAD BEFORE ANY LIFTING IS STARTED. DO NOT DRAG LOADS WITH THIS CRANE.
9. BOOM MUST BE IN ITS BOOM REST BEFORE MOVING THE VEHICLE.
10. MAINTAIN THIS CRANE AS REQUIRED IN THE OWNER'S MANUAL.
11. DO NOT ALLOW PERSONNEL TO RIDE ON THE LOAD LINE, LOAD, OR BOOM OF THIS CRANE.
12. IT IS UNLAWFUL TO OPERATE THIS EQUIPMENT WITHIN TEN FEET OF HIGH VOLTAGE LINES.

HFTMOORE

THIS PAGE INTENTIONALLY LEFT BLANK

INTRODUCTION

This crane is a powerful machine designed to lift and move heavy loads. There are many hazards associated with these operations. Liftmoore has designed this crane to be as safe as possible but -

IT IS THE OPERATOR'S RESPONSIBILITY TO PREVENT ACCIDENTS!

This takes pre-planning, attention, and knowledge of basic principles and rules. Even if you have used similar cranes, reading this manual in its entirety will help prevent damage, injury, or even loss of life; benefits well worth the short amount of time it takes to read these pages.

REGULATORY AUTHORITY

Use of this crane is governed by OSHA 29 CFR 1910.180 and may be governed by other federal, state, or local regulations.

IT IS THE OPERATOR'S RESPONSIBILITY TO UNDERSTAND AND COMPLY WITH ALL APPLICABLE REGULATIONS GOVERNING THE OPERATION, INSPECTION, AND MAINTENANCE OF THIS CRANE.

Personnel should be trained, tested, and certified, as recommended by OSHA and ANSI standards, before operating this crane.

USING THIS MANUAL

This manual assumes that the crane is mounted on a typical service body type or similar truck, which is powered by the vehicle electrical or hydraulic system, and is controlled by either the standard pendant control or FM radio control sold by Liftmoore, Inc.

This manual is supplied to provide basic guidelines for the safe use, routine maintenance, and general inspections of this crane.
This manual is supplied to provide basic guidelines for the safe use, routine maintenance, and general inspections of this crane.

Laws, regulations, standards, or policies may be more restrictive than this manual. If a conflict exists for any limit or condition, the safest or most prohibitive shall be used. Under no circumstances shall the load, moment, or stability ratings be exceeded.

Pay particular attention to the following:
WARNING! - Draws attention to hazards, conditions, or procedures that if not observed could result in injury or death.

CAUTION! - Draws attention to hazards, conditions, or procedures that if not observed could result in damage to the crane, load, or other equipment. Equipment failure could in turn lead to injury or death.

NOTE! - Draws attention to conditions or procedures that are essential to emphasize.

For questions, interpretations, or to report errors, please contact Liftmoore, Inc, Engineering Dept.

OPERATING RESTRICTIONS

DUTY CYCLE

For Electric Cranes the duty cycle time should be limited to 5 minutes of continuous use every 30 minutes. This is recommended to increase lifespan of motors. This is limited by heat buildup in the motors and declining charge in the batteries. (Installing extra batteries near the crane helps keep the voltage at maximum.)

PERSONNEL

LIFTING OR MOVING OF PERSONNEL IS STRICTLY PROHIBITED! This crane was neither designed nor intended to lift personnel. Under no circumstances should anyone be allowed to ride on the crane, line, or load. All non-essential personnel must be kept away when using the crane. The load must never be moved over people, nor must anyone be allowed to pass or stand under a suspended load.

ELECTRICAL LINES

Consult ASME B30.5 for operating procedures, minimum safe distances, and prohibited zones when working around electrical lines or poles.

When operating near electrical power lines, the crane must be positioned so that the distance from the crane to the lines or poles is equal to or greater than the length of the fully extended boom plus the minimum safe distance required.

All parts of the crane, line, and load must be kept a minimum safe distance from electrical power lines and poles. This distance is 10 feet for electrical lines carrying 50 kV or less.

UNDER NO CIRCUMSTANCES SHOULD A CRANE BE OPERATED UNDER ELECTRICAL POWER LINES.

OPERATING PRACTICES

SETUP

POSITION The vehicle must be positioned so that the load is kept as close to the crane base as possible to reduce the moment on the crane. Consideration must be given to starting and ending position as well as firmness and slope of the ground and any obstructions.

OUTRIGGERS The outriggers or jackstands must be firmly set and the vehicle as level as possible. This will reduce the stresses on the rotation drive and keep the load off the vehicle's suspension. Keep in mind that the weight on the vehicle will shift as the crane and load is rotated.

MANUAL BOOM EXTENSION If the

 manual extension part of the boom is needed, it must be extended and the boom pin placed in the required position. Insert the pin and replace the pin's hairpin keeper before attempting to lift any load.LOAD LIMIT The operator must understand the crane load chart. The operator must ensure that the load is within the load limits over the entire range which it will be moved. Be sure to include the weight of any lifting devices including the travel block.
The load limit chart is attached to the side of the crane to aid the operator.
The boom angle indicator and chart aids the operator in determining the load capacity at various boom angles and extensions. It also gives the load limit at that configuration.

STABILITY A stability chart must be posted near the crane. The operator must understand the stability chart. The crane may be de-rated over some areas of its operating radius.

TRAVEL BLOCK The operator must determine if the load is within the single line compatibility of the winch or if a multi-part line configuration is needed.

REEVING Ensure the proper routing of the rope through the sheaves and travel block. The rope must lie in the sheave groove and must not rub against any metal objects.

Ensure the rope is correctly wound on the winch drum. The crane assembly drawing will indicate if the rope must be wound over the top or bottom of the drum. The rope must never contact any part of the winch mounting.

WARNING!

If the winch winding direction is reversed the brake will not work and the load will fall.

ATTACHING THE LOAD

POSITION The boom tip must be moved over the load before lifting so that it will be lifted straight up.

CAUTION!

Never drag a load with the crane. Dragging a load puts very high stresses on the crane for which it was not designed.

ROPE Check the rope condition to ensure it is not frayed or damaged. Ensure that the rope is not kinked and that it does not contact any sharp edges or make any sharp bends.

If using double line configuration, ensure that the lines are not twisted.

CAUTION!

Never wrap the hoist rope around the load! Serious damage to the rope WILL occur.

HOOK Always make sure the load is applied to the throat of the hook. Never use a bent hook.

CAUTION!

Always lift with the throat of the hook. Never lift with the load applied to the tip of the hook. Doing so will bend the hook.

SLINGS If the load does not have a lifting eye, use a nylon, chain, or other type of sling designed for lifting and rated for loads greater than that being lifted.

BALANCE Ensure the load will be secure and balanced when lifted. Ensure that the load cannot shift in the sling and that the sling cannot slide across the hook should the load become unbalanced.

LIFTING THE LOAD

Before lifting, ensure that the load is free from all mountings and is no way attached or stuck to anything.

Ensure that at least five full wraps remain on the winch drum at all times.

Test the winch brake by lifting the load a few inches and ensuring that it does not slip.

HOLDING THE LOAD

The operator must keep the load in sight at all times once it is lifted.

The operator must never leave the controls once the load is lifted.

The operator must ensure that no one is allowed to pass or stand under a suspended load.

CAUTION!

Never move the vehicle with a suspended load. Doing so will put dynamic loads on the crane for which it was not designed.

MOVING THE LOAD

Before moving the load, make sure the path is free of any obstructions or people.

Avoid sudden accelerations or stops. Speeds must be kept to a minimum, especially rotation, to keep the load from swinging.

Avoid sudden reversing of direction. Do not reverse direction while the load is still moving.

Make sure that no part of the crane, boom, or load makes contact with any obstruction or comes within a minimum of ten feet from any electrical line.

TRANSIT

While in transit, the crane must be stowed, preferably in a boom rest. The crane must be prevented from rotating and the hook prevented from swinging.

INSPECTION AND MAINTENANCE

OSHA and ASME require frequent and periodic inspections. Records of these inspections must be kept readily available. Liftmoore requires periodic maintenance to ensure proper operation and prolonged life of the crane.

INSPECTION

DAILY INSPECTION

OSHA 29CFR 1910.180 (d)(2)(i) requires the following be checked daily prior to use:

- All control mechanisms for maladjustment interfering with proper operation as well as for excessive wear of components and contamination by lubricants or other foreign matter.
- All safety devices for malfunction. This should include the anti-two block and pressure switch.
- Deterioration or leakage in air or hydraulic systems.
- Crane hooks with deformations or cracks. For hooks with cracks or having more than 15 percent in excess of normal throat opening or more than 10 deg. twist from the plane of the unbent hook.
- Electrical apparatus for malfunctioning, signs of excessive deterioration, dirt, and moisture accumulation. This should include the battery terminals, master disconnect switch, electrical swivel
- The wire rope shall be replaced if any of the following conditions are noted:
- Kinking, crushing, birdcaging, or other damage
- Reductions from nominal diameter of more than one-sixty-fourth inch for diameters up to and including five-sixteenths inch, one-thirty-second inch for diameters three-eighths inch to and including onehalf inch.
- Thimble is not in place or is damaged
- Any evidence of heat damage
- Six or more randomly distributed broken wires in 1 lay
- Three or more broken wires in 1 strand in 1 lay

MONTHLY INSPECTION

A thorough inspection of all ropes in use shall be made at least once a month and a certification record which includes the date of inspection, the signature of the person who performed the inspection and an identifier for the ropes shall be prepared and kept on file where readily available. All inspections shall be performed by an appointed or authorized person. Any deterioration, resulting in appreciable loss of original strength shall be carefully observed and determination made as to whether further use of the rope would constitute a safety hazard. Some of the conditions that could result in an appreciable loss of strength are the following:

- Reduction of rope diameter below nominal diameter due to loss of core support, internal or external corrosion, or wear of outside wires.
- A number of broken outside wires and the degree of distribution of concentration of such broken wires.
- Worn outside wires.
- Corroded or broken wires at end connections.
- Corroded, cracked, bent, worn, or improperly applied end connections.
- Severe kinking, crushing, cutting, or unstranding.

PERIODIC INSPECTION

An Annual Inspection Form is included in this manual. OSHA 29CFR 1910.180 (d)(2)ii) requires periodic inspections of this crane. Liftmoore recommends an annual inspection using the included form.

MAINTENANCE PRECAUTIONS

The crane should be maintained monthly for safety reasons and to reduce stress on the crane.

WARNING!

Never perform any maintenance while the crane has any type of load on it. Use the manual operation procedure to lower the load if necessary.

WARNING!

Hydraulic cylinders may have high pressure stored in them even after hydraulic power is removed.

The counterbalance and pilot operated check valve in the cylinder will always hold some pressure in the cylinder. Slightly extending the cylinder then retracting a small amount will relieve most of the pressure in the cylinder. DO NOT DEADHEAD THE CYLINDER! This will store the maximum amount of pressure in the cylinder. Care should be taken when either valve is removed from the cylinder as some pressure will still remain.

After any maintenance has been performed the crane shall not be operated until all guards have been reinstalled, all safety devices reactivated, and maintenance equipment removed.

LUBRICATION Refer to the crane specification section for the periodic maintenance schedule and type of lubrication required.

BOLTS Bolts may loosen over time due to vibration; therefore they should be checked periodically. If bolts need to be replaced, make sure they are replaced with bolts of equal or greater strength. Check the periodic maintenance schedule (Crane Specification Section) for bolt specification and torque.

NOTE!

Sheave and boom and cylinder pivot bolts are not standard bolts. The shank and thread length of these bolts have been modified so that they do not pivot on the threads. Consult the parts section of this manual for part numbers of these bolts.

OTHER MAINTENANCE

Refer to parts drawings for any specific maintenance or adjustment procedures such as hydraulic winch brake, rotation drive gear set adjustment, Etc..

MONTHLY INSPECTION REPORT

Crane Model No. \qquad

Serial Number

\qquad

Are Boom Hitch Pins and Keepers in place?
Wire Line Hook with Safety Latch Working?
Is Hook OK, (Not bent)?
Is Thimble on Wire Rope OK?
Is Traveling Block in use?
Is Wire Rope OK, not kinked or frayed?
Are all Boom Sections straight?
Are Sheave Bolts in place and tight?
Do all Sheaves rotate easily?
Are Mounting Bolts tight?
Is Anti Two-Block functioning properly?
Is Boom Angle Indicator in place and functioning and is Chart legible?

Are Cylinder Mounting Bolts secure?
Are Winch Mounting Bolts tight?
When stopped does winch drift less than 1.0 Inches?
Is Load Chart in place and easily read?
Are functions on Pendant operating correctly?
Is Hydraulic Reservoir full?
Is Outrigger straight and functioning?
Yes \qquad No \qquad
Yes \qquad No \qquad
Yes__ No \qquad
Yes \qquad No \qquad
Yes \qquad No \qquad
Yes_ No \qquad
Yes__ No \qquad
Yes \qquad No \qquad
Yes_ No \qquad

Yes__ No \qquad
Yes \qquad No \qquad

Yes_ No \qquad
Yes_ No \qquad
Yes__ No \qquad
Yes \qquad No \qquad
Yes_ No \qquad
Yes__ No \qquad
Yes \qquad No \qquad
Yes \qquad No \qquad
Any items checked 'No' must be repaired before using this crane.

OWNER
MODEL NUMBER SERIAL NUMBER

DATE

Check the following:
__Crane Mounting Bolts (Torque)
__Winch mounting Bolts (Torque)
__Boom mounting bolts
__Cylinder mounting bolts
__Cracks on boom (Check when extended)
___Extension Pads not worn excessively
__Cracks on housing
__Weld cracks on boom
__ Weld cracks on housing
__Boom swing approximately one inch or less at boom tip when retracted
_Hydraulic leaks
__Hoses not chafed or cracked
Sheaves not cracked
__Boom Tip
Traveling Block
___Sheaves not worn excessively
__Boom Tip
___Traveling Block
__Sheaves rotate freely
__Boom Tip
__Traveling Block
___Load Chart in place and legible
__Boom angle chart in place and legible
_Labels in place (See manufacturer's chart)
___Crane Hook Throat Opening within 15\% of standard
_Crane Hook not bent more than 10 degrees from plane
Hook safety latch operating properly
_Booms pin(s) and Keeper(s) in place (Manual Extension Section)
\qquad Wire Rope removed if the following occurs:
Six randomly distributed broken wires in one lay or three broken wires in one strand in one lay.

Wear of one-third the original diameter of outside individual wires.
Kinking, crushing, bird-caging or any other damage.
Evidence of heat damage.
Reduction from nominal diameter of more than one sixty-fourth inch for diameters to five-sixteenths diameter and one-thirty-second inch for diameters three-eighths to onehalf inch.
\qquad Wire Line installed as manufacturer requires.
__Protective covers in place
__Grease crane as required
Check fluid level
__Winch
__Gearbox
__Reservoir

Control system for proper operation
___Winch Up and Down
__Boom Up and Down
Boom In and Out
Rotation CW and CCW

Anti Two-Block (Required on Power Extendible Cranes) interrupts:
\qquad Boom Down
\qquad Boom Out
\qquad Winch Up
__Boom Up stopped by Up Limit Switch
___Outrigger or jackstand operable
___Outrigger crushing decal in place
__Outrigger and Jackstand operates properly
__Boom rest in place and used
___Load Sensor trips when overloaded
__ Winch Down does not overrun when stopped
___Crane stability chart in place and visible.
I certify that I have performed the above tests and that any deficiencies were corrected and now comply as above.

Signed \qquad
Print Name \qquad

Company \qquad
Address \qquad
City \qquad State \qquad

STANDARD HAND SIGNALS FOR CONTROLLING CRANE OPERATIONS

HOIST. With forearm vertical, forefinger pointing up, move hand in small horizontal circle.	LOWER. With arm extended downward, forefinger pointing down, move hand in small horizontal circle.	USE MAIN HOIST. Tap fist on head; then use regular signals.
USE WHIPLINE (Auxiliary Hoist). Tap elbow with one hand; then use regular signals.	RAISE BOOM. Arm extended, fingers closed, thumb pointing upward.	LOWER BOOM. Arm extended, fingers closed, thumb pointing downward.

MOVE SLOWLY. Use one hand to give any motion signal and place other hand motionless in front of hand giving the motion signal. (Hoist slowly shown as example.)	RAISE THEBOOM AND LOWERTHE LOAD. With arm extended, thumb pointing up, flex fingers in and out as long as load movement is desired.	LOWER THE BOOM ANDRAISE THE LOAD. With arm extended, thumb pointing down, flex fingers in and out as long as load movement is desired.
SWING. Arm extended, point with finger in direction of swing of boom.	STOP. Arm extended, palm down, move arm back and forth horizontally.	EMERGENCY STOP. Both arms extended, palms down, move arms back and forth horizontally.

TRAVEL. Arm extended forward, hand open and slightly raised, make pushing motion in direction of travel.	DOG EVERYTHING. Clasp hands in front of body.	TRAVEL (Both Tracks). Use both fists in front of body, making a circular motion about each other, indicating direction of travel, forward or backward. (For land cranes only.)
TRAVEL. (One Track) Lock the track on side indicated by raised fist. Travel opposite track in direction indicated by circular motion of other fist, rotated vertically in front of body. (For land cranes only.)	EXTEND BOOM (Telescoping Booms). Both fists in front of body with thumbs pointing outward.	RETRACT BOOM (Telescoping Booms). Both fists in front of body with thumbs pointing toward each other.

THIS PAGE INTENTIONALLY LEFT BLANK

KMFM CONTROL SYSTEM

KMFM - KAR-TECH MINI FM
The Liftmoore FM control system Model KMFM is a microprocessor-based radio remote control system, which allows wireless crane control. The receiver connects to the standard crane control socket, just like the wired pendant, so it is easily retrofitted and does not prevent use of the standard wired pendant.

RECEIVER

The receiver features encapsulated electronics for weather resistance and LEDs for user diagnostics. It is mounted to the crane and connects to the crane control socket. Upon user input, the receiver energizes the applicable function valves and/or solenoids, just as the wired pendant does.

TRANSMITTER

The transmitter is a pocket sized, hand held unit featuring an on/off power switch, push button switches for each function, and two diagnostics LEDs. It is powered by 2 AA Alkaline batteries and includes a power saving feature, which turns itself off if idle for 2 minutes

DIAGNOSTIC LEDS

There is a green and a red LED located inside the receiver and on the transmitter.

The green LED will blink every $1 / 2$ second if there is communication between the transmitter and the receiver. It will blink every second if there is no communication.

The transmitter's red LED will blink once every second if the batteries are low and need to be replaced.

Error codes are indicated by a number of flashes of the red LED. For example, 4 blinks and a pause means output number 3 has a problem. See the trouble shooting section for more information.

MOUNTING

The FM receiver should be mounted so that it is protected from physical damage. It should be as high as possible with the antenna pointing upwards. A temporary mounting method, such as magnets or Velcro, is recommended so that it may be removed when not in use.

OPERATION

POWER ON- PRESS AND HOLD POWER BUTTON UNTIL GREEN LIGHT BEGINS FLASHING.

POWER OFF- PRESS AND HOLD POWER BUTTON UNTIL GREEN \& RED LIGHTS STOP FLASHING.

REPLACEMENT OF COMPONENTS

Each transmitter is encoded with a digital ID that is programmed to its specific receiver. The receiver then only accepts signals from that transmitter so multiple cranes may be operated in the same vicinity without interference. If either component needs to be replaced, the receiver must be programmed to accept the new transmitter ID. Contact Liftmoore, Inc. for more information.

RETROFIT

The system design allows for easy retrofit. The only crane modification required is the simple addition of a ground wire to the control socket. This does not prevent the use of the wired pendant.

SAFETY SYSTEM

The safety system is designed to help prevent damage to the crane that would be caused by overload or two-blocking. The system consists of a load sensor, anti-two block device (optional on smaller, electric cranes), and limiting system control board.

When the applicable switch detects an overload or two-block condition, the limiting system will prevent activation of winch up, boom down, and extend out since these directions would cause damage. Winch down, boom up, extend in, and power rotation will still function so that the crane can be moved to a safe configuration.

CAUTION!

Never de-activate or override safety functions. Doing so can result in serious damage to the crane and possibly injury or death.

LOAD SENSOR

A pressure activated switch in the elevation cylinder acts as a load sensor. This switch is normally closed and opens at the preset pressure corresponding to the load rating of the crane.

CAUTION!

The load sensor will not function when the elevation cylinder is fully retracted and is inaccurate when the boom is below horizontal.

CAUTION!

The operator must never rely strictly on the load sensor to determine overload conditions. The load and load limits must always be known and adhered to.

MISCELLANEOUS

UP LIMIT SWITCH

The up limit switch prevents the elevation cylinder from reaching full extension. If the elevation cylinder were to "dead-head", the resulting pressure would activate the load sensor, preventing boom down. The boom would then have to be lowered using the manual operation buttons on the solenoid valves.

CIRCUIT BREAKER, FUSE

For electric cranes a 150 Amp circuit breaker is supplied with the crane. It should be installed as close to the battery as possible. For hydraulic cranes a 10 Amp blade type fuse is supplied.

DISCONNECT SWITCH

A power disconnect switch is supplied with the crane. Power to the crane should be turned off whenever not in use. This is to prevent inadvertent or unauthorized use and will help prevent corrosion at electrical connections.

THIS PAGE INTENTIONALLY LEFT BLANK

HYDRAULIC SYSTEM FOR ELECTRIC CRANES

The hydraulic system consists of the hydraulic pump, manifold, solenoid valves, cylinders, motors, and tubing and hoses. Hydraulic power is generated by the electrically driven hydraulic pump on the outside of the housing. The hydraulic system is plumbed in series so that more than one function can be operated simultaneously.

PUMP

The hydraulic pump assembly consists of a DC permanent magnet electric motor, pump, and reservoir.

The motor is activated by the pump solenoid. The solenoid is energized by the pendant control whenever a hydraulic function is activated.

The pump provides fluid pressure to power hydraulic functions. The system incorporates an adjustable relief valve to prevent damage that can be caused by over pressurizing the system.

Fluid is drawn from and returned to the reservoir. Servicing the hydraulic pump consist of maintaining the oil level. The reservoir should be kept as full as possible to prevent condensation from forming inside the tank. Also ensure the oil is not contaminated by water, dirt, rust, etc. See crane specification sheet for hydraulic oil type.

SOLENOID VALVES

Each hydraulically operated function is controlled by a 4 -way, 3 -position (open and close) center solenoid valve. It is electrically operated and spring biased to center. A manual operation button is incorporated in the coil-retaining nut. Valves are mounted to the series manifold.

CYLINDERS

Most hydraulic cylinders are double acting cylinders with integrally mounted counterbalance valve and pilot operated check valves. Refer to the cylinder drawings for specific information.

All cylinders use a counter-balance load holding cartridge valve on the extend port.
This valve performs 3 functions:

- Controls the rate of decent when lowering the load
- Keeps load from falling in the event of sudden loss of system pressure, such as when a hose bursts.
- Acts as a relief valve to prevent damage from induced load or thermal expansion.

It allows free flow to extend then blocks flow until opened by pilot pressure to the retract port or when the relief pressure is reached.

Some cylinders utilize a pilot operated check valve on the retract port to prevent the cylinder from creeping out under no load conditions. This valve allows flow into, but prevents flow from the retract port, thus hydraulically locking the cylinder until opened by pilot pressure to the extend port.

MOTORS

The hydraulic motor used by the rotation drive is a high-torque, low-speed constant displacement motor.

MANUAL OPERATION

If electrical problems occur the solenoid valves may be operated manually by depressing the manual operation button incorporated in the coil-retaining nut. Using a blunt object such as a bolt or screwdriver handle may be required to assist operation if high pressures are needed. Refer to the manifold drawing for function valves and directions.

If possible, activate the pump by activating a hydraulic function on the pendant. If this does not work, then energize the pump solenoid using a jumper from the hot side of
the solenoid to the coil post where the WHT/BLK wire is connected. If this fails also then battery voltage can be applied directly to the pump motor.

If hydraulic power is lost while a load is suspended, the load can be lowered by decreasing the setting on the counterbalance valve. This should only be done in extreme cases. The valve must be reset before the crane is returned to use.

WARNING!

The boom may fall if the adjustment is made too fast. Do not stand where the boom may hit you if it falls. Serious injury or death may result

WARNING!

The area between the boom and the cylinder, the boom and the housing, and the cylinder and the housing will change as the boom position changes and could form pinch points. Do not position any part of your body in these areas as it may be pinched or crushed as the boom lowers.

To decrease the setting, loosen the locknut on the valve, then slowly turn the adjustment stem CLOCKWISE until the load begins to lower. Count the number of turns so that the valve can be returned to its original setting.

Alternately, a pressure gage must be put on the retract port to adjust the setting so that approx. 1800 PSI is required to lower the boom with no load.

Test the setting by lifting a known load near the moment rating.

TROUBLESHOOTING KMFM CONTROL SYSTEM

If the crane does not operate, ensure that both the transmitter and receiver are on. Try disconnecting power to the crane receiver then reconnecting.

Run the crane using the wire pendant to confirm that the problem is the wireless unit.

Check that the green transmit light on the transmitter and the green receive light on the receiver light up when a function is selected.

Check for error codes and correct as necessary.

NOTE!

The green transmit light is located inside the transmitter.

Check that all connectors are secure.
Check for bent pins on the receiver connectors.

If the transmit and receive LEDs are both lit when a function is selected and no error codes are given contact Liftmoore, Inc. for further information.

Transmitter Error Code Chart

	PROBLEM
1	LOW BATTERY
2	FAULTY CIRCUIT TO HOIST UP
3	FAULTY CIRCUIT TO HOIST DOWN
4	FAULTY CIRCUTT TO BOOM UP
5	FAULTY CIRCUIT TO BOOM DOWN
6	FAULTY CIRCUIT TO ROTATION CW
7	FAULTY CIRCUIIT TO ROTATION CCW
8	FAULTY CIRCUTT TO EXENSION OUT
9	FAULTY CIRCUIT TO EXTENSION IN
10	FAULTY CIRCUIT TO PUMP RELAY

ERROR CODE NUMBER IS THE NUMBER OF RED LIGHT BLINKS BETWEEN EVERY PAUSE.

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

TROUBLESHOOTING HYDRAULIC PUMP

Electric Pump, 14P Socke

IMPORTANT NOTE!

The importance of first physically checking every connection between the battery and the crane cannot be overstressed!

Poor connections or poor grounding account for a large percentage of electrical problems. Time is often wasted chasing other probable causes only to eventually find a loose or corroded connection. Measuring the voltage is not sufficient. Often a poor connection will allow enough amperage to operate a meter or test light, but not enough to operate the motor, which requires very high amperage.

If the problem is random and intermittent then it is almost assuredly a loose or bad connection.

Another common problem is low battery voltage. Even if the battery is good when troubleshooting begins, running the motor can quickly drain a battery. If it can be done safely, it is best to have the vehicle running.

Also check the control socket and plug for bent, corroded, or dirty pins.

CAUTION!

As the motor approaches stall, due to low voltage or excessive load, a very rapid heat build up occurs which will
quickly damage the motor. If the motor is not turning, do not operate the switch for more than a second. Allow the motor to cool between attempts to make it run.

FOAMY FLUID

If the fluid foams then the problem is the pump seal - have it replaced.

PUMP DOES NOT RUN

If both the pump and winch are not working, the problem is power related or control wiring related. Troubleshoot those areas first. Check voltage and amperage at pump motor while activating hydraulic function.

If the solenoid is actuating it will make a clicking noise. If the solenoid is not clicking, check for power at the coil input (small screw terminal) on solenoid when the Boom Up switch is activated. If there is no power then the problem is the electrical wiring harness or pendant control wiring.(refer. to CONTROL TROUBLESHOOTING CHART).

If the coil is getting power when the switch is activated, but not clicking then the problem is most likely the solenoid.

If the solenoid is clicking check for full power input to the solenoid. Trace the wiring back to the crane input, checking for power at each connection until the problem is found. If full electrical power to the motor is confirmed then the motor is faulty and should be replaced.

LIMITING SYSTEM

DESCRIPTION:

Liftmoore Limiting system (LS) is a micro processor-based control system designed to aid the machine operator by providing an overload shutoff mechanism. This system monitors the BOOM ANGLE and PRESSURE SENSOR inputs. By comparing these values to a built in Load Chart, The LS determines if the boom is in a safe operating position where all the functions are safe to operate, or if the boom in an unsafe position where some functions are disabled.

The LS controller operates the WINCH UP, EXTENSION OUT, ELEVATION UP, and ELEVATION DOWN valves.

When operating in a safe position, all four functions follow their dedicated inputs. For example, when the ELEVATION UP INPUT is connected to BATTERY + , the ELEVATION UP OUTPUT turns ON, and when the ELEVATION UP INPUT is disconnected, the ELEVATION UP OUTPUT turns OFF.

When operating in an unsafe position, determined from the BOOM ANGLE and PRESSURE SENSOR, the WINCH UP, EXTENSION OUT, ELEVATION DOWN and ELEVATION UP outputs are deactivated and will remain OFF as long as the LS detects the unsafe condition. When ATB switch input is 0 volt, switch open, WINCH UP and EXTENSION OUT, outputs are deactivated.

The overload system is just a feature to aid the operator. The machine operator is still required to follow the load chart, OSHA and other applicable standards when operating the equipment in which this product is installed.

The control system consists of a controller board inside an enclosure. All external connections are made by the 12-pin sealed Deutsch connector.

ON/OFF OUTPUTS:

The LS Controller is designed with four on/off outputs with three ampere capacity and LED Status light. Each on/off is designed with short circuit and overload protection. In case of a short circuit or over load, the output is turned off and the status is displayed on the Error Code LED.

These outputs are designed to turn on and off corresponding to four switch inputs. Please refer to connection information and Error Code chart section of this manual.

ON/OFF INPUTS:

The LS controller is designed with 5 digital (switched to 12 VDC) inputs. Each input is protected from transient voltages up to 60 VDC. Refer to connection information in this manual for additional information.

ANALOG INPUTS:

The analog (proportional) inputs are provided to get signals from the Angle Sensor and the Pressure Sensor. The input range is 0.3 to 4.5 VDC (60 V transient). If any of the wires to the sensors are disconnected, the system will consider the situation is unsafe and will disable the outputs. An error code will be flashed on the Error Code LED. For additional information refer to Error Code chart and connection information in this manual.

WATCH DOG TIMERS:

The LS controller is designed with a "watch dog timer" for monitoring the regulated supply voltage and software execution. If the software program halts for any reason, or the voltage drops below specified value, the controller is returned to the reset state (all outputs off).

STATUS INDICATORS:

The control unit is equipped with two status indicator LEDs, one red and one green. If there is an error, the red LED flashes a certain number of times to indicate which error has occurred. Count the number of times the red LED flashes and refer to the error code chart on page 12 of this manual to determine the specific error. When there in no error, the green LED flashes to signify that the system is operating normally.

LIMITING SYSTEM

CONNECTION INFORMATION

Connector: DTM13-12PA

PIN\#	DESCRIPTION
	GROUND
B	ANGLE SENSOR INPUT
C	ELEVATION UP OUTPUT
D	ELEVATION UP SWITCH INPUT
E	PRESSURE SENSOR INPUT
F	WINCH UP SWITCH INPUT
G	ELEVATION DOWN SWITCH INPUT
H	EXTENSION OUT SWITCH INPUT
J	EXTENSION OUT OUTPUT
K	ELEVATION DOWN OUTPUT
L	WINCH UP OUTPUT
M	ATB SWITCH INPUT
N	SUPPLY (9 TO 30 VDC)

LIMITING SYSTEM

ROUTINE MAINTENANCE:

1. Inspect electrical wiring for wear points or other damage. Repair as required.
2. Inspect all connections (especially those on the valves) for looseness or corrosion. Tighten and/or seal as necessary.

MAINTENANCE PRECAUTIONS:

When performing any inspection or maintenance work on the system, always exercise care to prevent injury to yourself and others or damage to the equipment. The following are general precautions which should be closely followed in carrying out any maintenance work:

1. Do not have hydraulic pressure available to the valves when performing electrical tests.
2. Never operate or test any function if a person is in close proximity of the equipment, and could be injured if that function operated.
3. Take care to prevent metal tools from coming in contact with sensitive electronic components.
4. Turn power off before connecting or disconnecting valve coils or other electrical loads.

LIMITING SYSTEM
TROUBLE SHOOTING CHART
$\left.\left.\begin{array}{||l|l|l||}\hline \text { PROBLEM } & \begin{array}{l}\text { PROBABLE } \\ \text { CAUSE }\end{array} & \text { SOLUTION } \\ \hline \begin{array}{l}\text { 1. Control will not } \\ \text { operate when any } \\ \text { switches are } \\ \text { activated. No LEDs } \\ \text { ON or Flashing. }\end{array} & \begin{array}{l}\text { MISSING POWER TO } \\ \text { THE SYSTEM. }\end{array} & \begin{array}{l}\text { 1. Check that power switch is on. } \\ \text { 2. Check fuse supplying power to the control unit }\end{array} \\ \text { 3. Check vehicle wiring for power into the control. } \\ \text { 4. Check for proper grounding of vehicle's electrical } \\ \text { circuit. }\end{array}\right] \begin{array}{ll}\text { 5. Check vehicle's hydraulic system. } \\ \text { 6. Check crimped connections. Make sure connectors are } \\ \text { in proper alignment and seated correctly }\end{array}\right]$

LIMITING SYSTEM

ERROR CODE CHART

To display an error code, the controller turns on and off the error code LED (RED LED) a certain number of times with a pause at the end. It repeats the code until the problem is resolved. The following error code chart is provided to assist the service personnel in troubleshooting the system. If more than one error condition is present, the error code with the lower number will be displayed.

ERROR CODE COUNT	PROBABLE CAUSE
1	PRESSURE SENSOR INPUT OUT OF RANGE
2	ANGLE SENSOR INPUT OUT OF RANGE
3	OVERLOAD CONDITION
4	SHORT OR OVER LOAD ON ELEVATION UP OUTPUT
5	SHORT OR OVER LOAD ON ELEVATION DOWN OUTPUT
6	SHORT OR OVER LOAD ON EXTENSION OUT OUTPUT
7	SHORT OR OVER LOAD ON WINCH UP OUTPUT
8	ATB CONDITION

LIMITING SYSTEM

PARTS LIST

PART NUMBER	DESCRIPTION
25863	LIMITING SYSTEM (CIRCUIT BOARD)
24866	BOOM ANGLE SENSOR
24456	5000 PSI PRESSURE SENSOR
24867	PRESSURE SENSOR HARNESS

LIMITING SYSTEM

SPECIFICATIONS

Power supply voltage..... 12 V nominal, 9 V to 35 V transient
Operating temperature $-40 C$ to +85 C
Storage temperature -40 C to +100 C
Digital Inputs 12VDC, 60V transient
Analog Inputs 0.3 to $2.5 \mathrm{VDC}, 60 \mathrm{~V}$ transient
Outputs 3 Amps

THE JUMPERS ON THE CONTROL BOARD ARE USED TO CALIBRATE THE ANGLE SENSOR (SEE FIG. 1.0). THIS PROCEDURE SHOULD BE DONE DURING INITIAL INSTALLATION AND ANY TIME THE ANGLE SENSOR IS MOVED OR REPLACED.

1) INSTALL THE ANGLE SENSOR AT +15 DEGREES ON THE RIGHT SIDE OF THE BOOM (PIVOT TO SENSOR'S LEFT).
2) PLACE THE JUMPER TO THE "-45 DEGREE" POSITION.
3) THE RED LED SHOULD BE ON SOLID AND THE GREEN LED OFF.
4) MOVE THE BOOM DOWN TO -45 DEGREES.
5) BOTH THE LEDS SHOULD BE BLINKING. IF NOT, THE SENSOR IS EITHER MISWIRED OR NOT MOUNTED CORRECTLY (CHECK SENSOR OUTPUT VOLTAGE FOR . 5 TO . 6 VOLTS).
6) REMOVE THE JUMPER. BOTH LEDS WILL STAY ON SOLID FOR 3 SECONDS.
7) PLACE THE JUMPER TO THE "+70 DEGREE" POSITION.
8) THE GREEN LED SHOULD GO ON SOLID AND THE RED LED OFF.
9) MOVE THE BOOM UP TO 70 DEGREES.
10) BOTH LEDS SHOULD BE BLINKING. IF NOT, THE SENSOR IS EITHER MISWIRED OR NOT MOUNTED CORRECTLY (CHECK SENSOR OUTPUT VOLTAGE FOR 4.3 TO 4.5 VOLTS).
11) REMOVE THE JUMPER. BOTH LEDS SHOULD STAY ON SOLID FOR 3 SECONDS.
12) PUT THE JUMPER BACK IN THE STORAGE POSITION (SEE FIG. 1.0).
(FIG. 1.0)

Appendix B: WIRING DIAGRAM

OVERLOAD PRESSURE - BOOM ANGLE CHART

$\begin{gathered} \text { ANGLE } \\ \text { DEGREES } \end{gathered}$	OVERLOAD PRESSURE	BOOM DOWN OVERLOAD PRESSURE
70	2,700.0	2,700.0
69	2,700.0	2,700.0
68	2,700.0	2,700.0
67	2,700.0	2,700.0
66	2,700.0	2,700.0
65	2,700.0	2,700.0
64	2,700.0	2,700.0
63	2,700.0	2,700.0
62	2,700.0	2,700.0
61	2,700.0	2,700.0
60	2,649.2	2,649.2
59	2,545.7	2,545.7
58	2,450.5	2,450.5
57	2,362.5	2,362.5
56	2,281.1	2,281.1
55	2,205.6	2,205.6
54	2,135.3	2,135.3
53	2,069.7	2,069.7
52	2,008.4	2,008.4
51	1,951.1	1,951.1
50	1,897.2	1,897.2
49	1,846.6	1,846.6
48	1,799.0	1,799.0
47	1,754.1	1,754.1
46	1,711.7	1,711.7
45	1,671.6	1,721.6
44	1,633.7	1,683.7
43	1,597.7	1,647.7
42	1,563.6	1,613.6
41	1,531.2	1,581.2
40	1,500.4	1,550.4
39	1,471.0	1,546.0
38	1,443.1	1,518.1
37	1,416.4	1,491.4
36	1,391.0	1,466.0
35	1,366.7	1,441.7
34	1,343.5	1,443.5
33	1,321.2	1,421.2
32	1,300.0	1,400.0
31	1,279.6	1,379.6
30	1,260.1	1,360.1
29	1,241.5	1,391.5
28	1,223.5	1,373.5
27	1,206.3	1,356.3
26	1,189.8	1,339.8
25	1,174.0	1,324.0
24	1,158.8	1,308.8
23	1,144.1	1,294.1
22	1,130.1	1,280.1
21	1,116.6	1,266.6
20	1,103.6	1,253.6
19	1,091.1	1,291.1
18	1,079.0	1,279.0
17	1,067.5	1,267.5
16	1,056.4	1,256.4
15	1,045.7	1,245.7
14	1,035.4	1,285.4
13	1,025.5	1,275.5

$\begin{gathered} \text { ANGLE } \\ \text { DEGREES } \end{gathered}$	OVERLOAD PRESSURE	BOOM DOWN OVERLOAD PRESSURE
12	1,016.0	1,266.0
11	1,006.8	1,256.8
10	998.0	1,248.0
9	989.6	1,239.6
8	981.5	1,231.5
7	973.7	1,223.7
6	966.2	1,216.2
5	959.0	1,209.0
4	952.1	1,202.1
3	945.5	1,195.5
2	939.2	1,189.2
1	933.2	1,183.2
0	927.4	1,177.4
-1	921.9	1,171.9
-2	916.7	1,166.7
-3	911.7	1,161.7
-4	907.0	1,157.0
-5	902.5	1,152.5
-6	898.3	1,148.3
-7	894.3	1,144.3
-8	890.8	1,140.8
-9	887.0	1,137.0
-10	883.7	1,133.7
-11	880.7	1,130.7
-12	877.9	1,127.9
-13	875.3	1,125.3
-14	872.9	1,122.9
-15	870.8	1,120.8
-16	868.9	1,118.9
-17	867.2	1,117.2
-18	865.8	1,115.8
-19	864.6	1,114.6
-20	863.7	1,113.7
-21	863.0	1,113.0
-22	862.5	1,112.5
-23	862.3	1,112.3
-24	862.3	1,112.3
-25	862.6	1,112.6
-26	863.1	1,113.1
-27	863.9	1,113.9
-28	864.9	1,114.9
-29	866.3	1,116.3
-30	867.9	1,117.9
-31	869.8	1,119.8
-32	872.0	1,122.0
-33	874.5	1,124.5
-34	877.3	1,127.3
-35	880.5	1,130.5
-36	884.0	1,134.0
-37	887.8	1,137.8
-38	892.0	1,142.0
-39	896.5	1,146.5
-40	901.5	1,151.5
-41	906.9	1,156.9
-42	912.6	1,162.6
-43	918.9	1,168.9
-44	925.6	1,175.6
-45	932.7	1,182.7

DEUTSCH CONNECTIONS \& PINS

SECTION IV

CRANE SPECIFICATIONS
 MODEL LA6K EX-11 CRANES

MOMENT RATING
mAX SINGLE LINE LOAD

6,500 FT-LBS
2,000 LBS

LIFTING CAPACITIES AT VARIOUS LOAD RADII:

HEIGHT- FT

POWERED FUNCTIONS AND EXPECTED TIMES:

WINCH
BOOM ELEVATION BOOM EXTENSION ROTATION ELECTRICAL:

UP: $\quad 15 \mathrm{~s}$ DOWN: 15 s
UP: $\quad 31 \mathrm{~s}$ DOWN:34 s
OUT: 20 s IN: 12 s $360^{\circ} \quad 64 \mathrm{~s}$

VOLTAGE
FUSE
CIRCUIT BREAKER

12 VDC 15 AMP 150 AMP

NOTE: FUNCTION TIMES ARE BASED ON THESE INPUT VALUES

PERIODIC MAINTENANCE SCHEDULE MODEL LA6K CRANES		
BOLTS		
MOUNTING BOLTS	$\begin{aligned} & \hline \text { 1/2-13 GRADE } 8 \\ & \text { TORQUE } 110 \text { FT-LBS DRY } \end{aligned}$	EVERY 4 MONTHS
LUBRICATION		
GREASE FITTINGS	SEE DRAWING	EVERY OTHER WEEK
HYDRAULIC FLUID	STANDARD Chevron AW Hydraulic Oil 46 or equivalent SAE 15 weight oil COLD WEATHER AW 32 or equivalent SAE 10 weight oil	CHECK DAILY, FILL AS NEEDED
BEARINGS	Oil Center Research PM 600 Military grease or equivalent Benton Based Grease NLGI Grade 2	EVERY 6 HOURS OF OPERATION

OTHER MAINTENANCE

ROTATION GEAR SETTING
See the Rotation Components drawing for adjustment procedure if backlash becomes so great that excessive boom movement occurs. Factory setting is such that the displacement of the retracted boom tip is less than 1 inch.

WINCH
The winch is factory lubricated and should not require further lubrication in its lifetime. The winch brake cannot be adjusted. If brake drift is more than 1 inch under full load then it must be replaced.

CRANE LUBRICATION POINTS

THIS PAGE INTENTIONALLY LEFT BLANK

LIST FOR BOX, CRANE PARTS LA6K EX-11

P/N 34848 - BOX, CRANE PARTS LA6K EX-11 SP

1)	P/N 34847 - MANUAL, CRANE LA6K EX-11 SP.	pc
2)	P/N 33021 - WIRE, BATTERY \#1 X 25' W \backslash MECON.	1pc
3)	P/N 30728 - WIRE, GROUND \#4 X 3' LONG.	1pc
4)	P/N 27490 - SWITCH, DISCONNECT COVER PLATE	1pc
5)	P/N 30815 - SCREW, HHC 0.50-13 X 2.50 GR8.	4pcs
6)	P/N 30474 - WASHER, LOCK 0.50 GR5 PLATED.	4pcs
7)	P/N 31957 - NUT, HEX 0.50-13 GR8 PLATED.	4pcs
8)	P/N 16878 - BREAKER, CIRCUIT 150 AMP.	1pc
9)	P/N 16915 - TERMINAL, LUG \#1 GA 0.25 DIA	2pcs
10)	P/N 30766 - SWITCH, DISCONNECT.	1pc
11)	P/N 17010 - BRACKET, SWITCH MNT. ELE. CRN.	1pc
12)	P/N 17063 - TERMINAL, LUG \#1 GA 0.37 DIA.	2pcs
13)	P/N 23144 - LEVEL AND TAPE ASSEMBLY	1pc
14)	P/N 27715 - DECAL, LOAD CAPACITY LA6K.	1pc

5－5

ITEM	PART NUMBER	DESCRIPTION	QTY
1	34837	BOOM-BODY ASSY LA6K REE-11	1
2	34528	KIT, VALVE OC 4W/3P/12V DTCH	2
3	34599	KIT, VALVE TC 4W/3P/12V DTCH	1
4	22394	PENDULUM, LOAD RADIUS DIA. HD	2
5	31017	SCREW, SHOULDER 0.31-18 X 0.75	2
6	23123	PRESSURE GAUGE, 0-3000 PSI	1
7	23135	ADAPTER, 4FP-6FJ SWIVEL	1
8	31576	NUT, HEX 10-24 GR2 PLATED	4
9	17252	SCREW, MH RD 10-24 X 0.75	3
10	32649	ADAPTER, 90 4MJ-4FJX	2
11	WI 34038	CONTACTOR, DP SEALED	1
12	17196	WIRE, BATTERY \#4 X 5" W/TERMS	1
13	23968	SWITCH, LIMIT UP LA6K DTCH	1
14	33606	WASHER, FLAT \#6 GR2 PLATED	2
15	31124	WASHER, LOCK \#6 GR2 PLATED	2
16	31123	NUT, HEX 6-32 GR2 PLATED	2
17	33126	SCREW, MH RD 6-32 X 1.25 STL	2
18	26514	EWH, CONTACTOR DTCH	1
19	33145	WASHER, FLAT \# 10 GR2 PLATED	2
20	32639	WASHER, LOCK \#10 GR2 PLATED	2
21	32400	ADAPTER, 4MJ-6MO	2
22	32967	HOSE, HYD \#4 17.25"	4
23	31408	WRAP, 3/4" BLACK SPIRAL CUT	4

5-11

	LIFTMOOREINC.					
	CRANE ASSY LA6K EX-11 IST SP					
	MTRL WEIGHT: 686	SHEET 3 - 3 6.346 L		34838		A

(

[^0]

の見目

To synchronize a new transmitter and receiver together，use

TEACH ID CODE：

the following procedure：
1．Turn both transmitter and receiver off
2．To get the transmitter into TEACH ID mode，press and hold
the POWER button for 10 seconds．Both LEDs start blinking． 3．Turn on the receiver．

4．Teach complete

5．SEE NOTE

		DRWWBY：JE	CONTROL，FM ASSY KT MEGA ELE．HORN TRANS．／RECIEVER PRO．SET	
		DATE： $41181 / 7$		28490－B

(

FRONT VIEW

WINCH DC2000 (MF) 12VDC P/N 27528

SERVICE PARTS LIST: DC2000 (MF) HOIST-12V P/N 27528

ITEM REFERENCE.

1

2

3

4

5
6

7

SVC KIT-MOTOR SPLINED-12V DC-4.8 PM
BUSHING DRUM NYLON
CARRIER ASSY, STAGE 1
CARRIER ASSY, STAGE 2
CARRIER ASSY, STAGE 3
COUPLER, MOTOR/BRAKE
CPSCR, 10-24 X 2-1/4-HEX SOCKET HEAD-PI
CPSCR, SOC, 10-24 X 3/4, GR9 (KB)
(MTO) S/P DRUM SUPPORT, GEAR END
DRUM, (KB) 2000-LF, 4.25 DIA
SVC KIT END HOUSING SUBASSY, CLUTCH PLUG
GEAR, SUN, 12 TOOTH, STAGE 1
RING GEAR, ARG, 75 TOOTH
HOUSING, GASKET
SPACER, MOTOR
(MTO)S/P BRAKE,2.13 ELECTRIC,BIASED
WASHER, THRUST, NYLON, MIDRANGE
SVC KIT TIE ROD, ALUMN, . 625 X 4.92
PARTS PACK, DC2000 HOIST
SHAFT-DRIVE-HEX 5/16 X 5.63

WI*84210
WI* 13831
WI*28430
WI*28433
WI*28115
WI*32149

WI*13850
WI*5553

WI*25986
WI*31618
WI*85583

WI*13874
WI*25308
WI*13848
WI*15271
WI*63548
WI*13826
WI*85579

WI*60049

WI*84415

SPECIFICATIUNS

LIFTMOORE LIMITED WARRANTY

Parts and Structural

Liftmoore, Inc. warrants each LIFTMOORE crane to be free from defects in materials and workmanship for twelve (12) months from the date of delivery to the original customer. Under the terms of this warranty the crane structural components manufactured by LIFTMOORE, Inc. are warranted for thirty-six (36) months from the date of delivery to the original customer. LIFTMOORE, Inc. will repair or replace, as its sole discretion, any equipment or part that is returned f.o.b. to LIFTMOORE, Inc.'s plant at 7810 Pinemont Drive, Houston, Texas 77040, or to one of its authorized dealers, and is found by LIFTMOORE, Inc. or its authorized dealer to have been defective at the time of original delivery.

The foregoing warranty is the exclusive warranty made by LIFTMOORE, Inc. with respect to its cranes and is in lieu of all other warranties. ANY AND ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS OF ANY CRANE FOR A PARTICULAR PURPOSE OR OPERATION, ARE HERBY EXPRESSLY DISCLAIMED.

The foregoing warranty applies only to LIFTMOORE cranes under normal use and service and does not apply in the event of damage caused by repair or alteration or damage during shipment, accident, negligence, overloading, or misuse, including operator's failure to follow any of the instructions issued with the crane.

This warranty is limited to the original purchaser and is not assignable. In order to submit a claim, the original purchaser must provide a copy of the original invoice for the crane in question within twelve (12) months following the delivery date and within 30 days from the date of repair.

The warranty applies only when the LIFTMOORE crane is used for commercial purposes and does not cover any purchase for use for personal, family or household purposes.

LIMITATION OF LIABILITY: LIFTMOORE, Inc.'s liability for any losses or damages resulting from any cause whatsoever, including LIFTMOORE, Inc.'s NEGLIGENCE or from a defective crane irrespective of whether such defects are discoverable or latent, shall in no event exceed the purchase price of the crane to which losses or damages are claimed, or at the election of LIFTMOORE, Inc., the repair or replacement of the defective crane.

In no event shall LIFTMOORE, Inc. be liable for any special, incidental, or consequential damages, including commercial losses or costs of any kind sustained by purchaser or any other person or for any damages for which purchaser may be liable to other persons by reason of any defect in any LIFTMOORE crane or any part thereof.

LIFTMOORE, Inc. reserves the right to make changes in design or construction of its cranes at any time without obligating itself to make such changes on cranes previously manufactured.

No agent, employee, or representative of LIFTMOORE, Inc. has authority to amend or modify the foregoing warranty or to bind LIFTMOORE, Inc. by any other warranty, guaranty, or assumption of liability.

In the event any provision of this warranty is for any reason held ineffective, the remaining provisions shall remain in full force and effect.

Some states do not allow limitations on how long an implied warranty lasts or the exclusion or limitation of incidental or consequential damages, so the above limitations and exclusions may not apply to you. This warranty gives you specific legal rights, and you may also have other legal rights that vary from state to state.

[^0]: NCLUDES TWO 65 LB
 MOUNTING MAGNETS
 FOR SIMPLE INSTALLATION
 OF THE RECEIVER AND
 TO THE CRANE

